Testing custom adjustment types

The Market Risk Application supports cube-level, fact-level, and roll-over adjustments for the Sensitivities, PnL, and VaR-ES cubes.

As an example of how to configure a new custom adjustment, this page explains how PNL adjustments have been defined within the mr-application module in the mr-application/src/main/java/com/activeviam/mr/application/signoff/adjustments/ directory.

note

PNL adjustments are scalar adjustments.

Configure Adjustment Execution

All adjustment processes are defined within the AdjustmentExecutionConfig.java class. Other library classes are mentioned where relevant.

Fact-level adjustments

Fact-level adjustments are modifications of the underlying data held in the datastore. They operate directly on datastore rows, using Execution objects containing functional components.

These functional components are defined in the ExecutionFunctionalComponents.java class.

The Execution object

Field Description
appliesOnAdjustments Determines whether or not the current adjustment applies for rows created by a previous adjustment.
inputParser An AdjustmentInputParser that takes the request and definition DTOs and matches the required definition inputs to the input provided in the request. The values of the request inputs are parsed using the IParser objects matching the type found in the definition.
inputRetriever An AdjustmentInputRetriever that takes a datastore row, the store format and a list of store fields and returns an object representing the value to be adjusted.
sourceTagger A List of AdjustmentStoreTagger objects that take an execution ID and the initial values of the Source and Input type fields and return a map with the new values of those fields.
valueField The datastore field that holds the values that will be adjusted by the execution.
expectedInputs The List of expected inputs required by the execution.
inputConverter An AdjustmentInputConverter that takes the result of the inputParser and the expectedInputs and generates the request inputs to be used in the adjustment steps.
steps A list of AdjustmentStep objects that use the results of the inputRetriever and inputConverter to create the adjusted values that will be written to the datastore.

As PnL adjustments are scalar (i.e. a fact is a single value, as opposed to a vector), the scalar functions are used:

  • inputParser is parseInput()
  • inputRetriever is scalarInputRetriever() - given the base tuple, the store format and a list of fields, returns a double value held by the first field in the list
  • inputConverter is scalarInputConverter() - given a map of values and the expected input, returns a single double-typed value

For the PnL datastore:

  • valueField parameter is StoreFieldNames.DAILY
  • expectedInputs parameter only contains StoreFieldNames.DAILY

Add On Execution

  • appliesOnAdjustments is false
  • sourceTagger contains:
    • userInputSourceTagging() - tags the row as direct user input
  • steps contains:
    • doubleInputReplacer() - replaces the initial value with the request input value
    private final Execution<Double, Double, Double> pnlAddOnExecution = new Execution<>(
            false,
            executionFunctionalComponents.parseInput(),
            executionFunctionalComponents.scalarInputRetriever(),
            List.of(executionFunctionalComponents.userInputSourceTagging()),
            StoreFieldNames.DAILY,
            List.of(StoreFieldNames.DAILY),
            executionFunctionalComponents.scalarInputConverter(),
            List.of(executionFunctionalComponents.doubleInputReplacer())
    );

Scaling Execution

  • appliesOnAdjustments is true
  • sourceTagger contains:
    • inverseTagging() - tags a row as the inversion of the initial row
    • scaleTagging() - tags the row as a scaling of the initial row
  • steps contains:
    • doubleInverter() - the execution replaces the initial value with its inverse (initialValue * -1.0)
    • doubleScaler() - the execution replaces the initial value with the scaled value (initialValue * scalingFactor)
    private final Execution<Double, Double, Double> pnlScalingExecution = new Execution<>(
            true,
            executionFunctionalComponents.parseInput(),
            executionFunctionalComponents.scalarInputRetriever(),
            List.of(executionFunctionalComponents.inverseTagging(), executionFunctionalComponents.scaleTagging()),
            StoreFieldNames.DAILY,
            List.of(StoreFieldNames.DAILY),
            executionFunctionalComponents.scalarInputConverter(),
            List.of(executionFunctionalComponents.doubleInverter(), executionFunctionalComponents.doubleScaler())
    );

Override Execution

  • appliesOnAdjustments is true
  • sourceTagger contains:
    • inverseTagging() - tags a row as the inversion of the initial row
    • userInputSourceTagging() - tags the row as direct user input
  • steps contains:
    • doubleInverter() - the execution replaces the initial value with its inverse (initialValue * -1.0)
    • doubleInputReplacer() - replaces the initial value with the request input value
    private final Execution<Double, Double, Double> pnlOverrideExecution = new Execution<>(
            true,
            executionFunctionalComponents.parseInput(),
            executionFunctionalComponents.scalarInputRetriever(),
            List.of(executionFunctionalComponents.inverseTagging(), executionFunctionalComponents.userInputSourceTagging()),
            StoreFieldNames.DAILY,
            List.of(StoreFieldNames.DAILY),
            executionFunctionalComponents.scalarInputConverter(),
            List.of(executionFunctionalComponents.doubleInverter(), executionFunctionalComponents.doubleInputReplacer())
    );

Cube-level adjustments

Cube-level adjustments rely on the creation of facts added to the base store (and on entries added to stores referenced by the base store if needed) to define the location at which they are applied, and on entries in an isolated store to define the measures for which they are defined, along with the adjusted values. Only add-ons are supported for cube-level adjustments. The add-ons are aggregated using dynamic aggregation on the adjustment source field of the base store of the cube for which the adjustment is created. The notion of location digest has been removed from the logic used for cube-level adjustments.

Cube-level adjustments work by submitting entries into:

  1. the CubeLevelAdjustments store to specify:
  • the ID of the entry, which corresponds to the value of the adjustment source field in the base store
  • the measure for which to provide an add-on value
  • the value used for the add-on
  • the currency in which that add-on value is expressed
  1. the base store (and if needed referenced stores) A fact is created in the base store of the cube for which a cube-level adjustment is created. The value of its adjustment source field corresponds to the id of the associated entry in the CubeLevelAdjustments store. If the cube-level adjustment is created for a level whose value comes form a store referenced by the base store, an entry is also created in the referenced store.

For instance, if the base store has the following entries:

AsOfDate TradeId RiskFactor Sensitivity Name Sensitivity Value Source
06/01/2025 T001 RF1 Equity Delta 1000.0 Unadjusted
06/01/2025 T001 RF2 Equity Delta 2000.0 Unadjusted

and the user John wants to create an add-on cube level adjustment in cube Cube1 of 3000.0 euros for the measure measure1 at the trade id level for T001 for the task Task1 , the following entry will be created in the base store:

AsOfDate TradeId RiskFactor Sensitivity Name Sensitivity Value Source
06/01/2025 T001 John_Task1_execution_id_001

and the following entry is added to the CubeLevelAdjustments store:

Id TaskId AsOfDate PivotId Currency Measure Value
John_Task1_execution_id_001 Task1 06/01/2025 Cube1 EUR measure1 3000.0

If the base store references a TradeAttributes store with the foreign key defined by (AsOfDate, TradeId), and the base store has this content:

AsOfDate TradeId RiskFactor Sensitivity Name Sensitivity Value Source
06/01/2025 T001 RF1 Equity Delta 1000.0 Unadjusted
06/01/2025 T001 RF2 Equity Delta 2000.0 Unadjusted
06/01/2025 T002 RF3 Equity Delta 5000.0 Unadjusted
06/01/2025 T003 RF4 Equity Delta 7000.0 Unadjusted

and the TradeAttributes store this content:

AsOfDate TradeId Book
06/01/2025 T001 BookA
06/01/2025 T002 BookA
06/01/2025 T003 BookB

and the user John wants to create an add-on cube level adjustment in cube Cube1 of 8000.0 euros for the measure measure1 at the book level for ‘BookA’ for the task Task2 , the following entry will be created in the base store:

AsOfDate TradeId RiskFactor Sensitivity Name Sensitivity Value Source
06/01/2025 John_Task1_execution_id_002 John_Task1_execution_id_002

The following entry will be added to the TradeAttributes store:

AsOfDate TradeId Book
06/01/2025 John_Task1_execution_id_002 BookA

And the following entry will be added to the CubeLevelAdjustments store:

Id TaskId AsOfDate PivotId Currency Measure Value
John_Task1_execution_id_002 Task1 06/01/2025 Cube1 EUR measure1 8000.0

The executor used for cube-level adjustments does not take any argument into account.

Roll-over adjustments

Roll-over adjustments operate on the datastore, replacing the rows corresponding to the current as-of date with the approved rows from the input as-of date.

The executors use the rollOver() method with the following arguments:

Argument Description
inverters A Map of inverter Function objects for the datastore fields that should be inverted by the roll-over.
inverseTagging Tagging TriFunction to generate the source and input tags for an inverted datastore row.
rollOverTagging Tagging TriFunction to generate the source and input tags for a rolled-over row.

For the PnL roll-over adjustment, the inverters are as follows:

    private final Map<String, AdjustmentConverterOperator> pnlInverters = Map.of(
            StoreFieldNames.DAILY, executionFunctionalComponents.inPlaceDoubleOrArrayInverter(),
            MONTHLY, executionFunctionalComponents.inPlaceDoubleOrArrayInverter(),
            YEARLY, executionFunctionalComponents.inPlaceDoubleOrArrayInverter(),
            LIFETIME, executionFunctionalComponents.inPlaceDoubleOrArrayInverter()
    );

The inPlaceDoubleOrArrayInverter() function returns input * 1.0 for double inputs and ((IVector) input).scale(-1.0) for IVector inputs.

Include Defined Executions in Executors Map

Now that we have defined our adjustment executions we need to add them to our executors Map which will be accessed by the services defined in the Sign-off API library.

We want to include our executors in the bean with the qualifier SP_QUALIFIER__EXECUTORS Note that our executors are included in both profiles.

    @Bean
    @Qualifier(SP_QUALIFIER__EXECUTORS)
    public Map<String, AdjustmentExecutor> executors() {
        executionFunctionalComponentsConfig.getExecutionFunctionalComponents().setStatusService(statusService);
        Map<String, AdjustmentExecutor> executors = new HashMap<>();
		...
        executors.put(PNL_ADD_ON, execution(onBranch, pnlAddOnExecution));
        executors.put(PNL_OVERRIDE, execution(onBranch, pnlOverrideExecution));
        executors.put(PNL_SCALING, execution(onBranch, pnlScalingExecution));
        executors.put(PNL_ROLL_OVER, rollOver(
                pnlInverters,
                executionFunctionalComponents.inverseTagging(),
                executionFunctionalComponents.rollOverTagging()));
        executors.put(PNL_CUBE_LEVEL, cubeLevelAdjustment());
        ...
        return executors;
    }

Define required dimensions for sign-off adjustments

Navigate to AdjustmentPivotConfig.java

We add SignOff Source Dimension to the appropriate schema in this case PnlSchema.

    @Bean
    @Qualifier("aPnlDimension")
    @Order(75)
    public HierarchyBuilderConsumer signOffPnlDimensionAdder() {
        return AdjustmentPivotConfig::getSignOffSourceDimension;
    }

Add source tagging fields

Navigate to SignOffDatastoreCustomisations

    public static void loadCustomisations(IDatastoreConfigurator configurator) {
	    ...
        addTagging(configurator, PnLDatastoreDescriptionConfig.SCHEMA, StoreNames.PNL_STORE_NAME);
        addTagging(configurator, PnLDatastoreDescriptionConfig.SCALAR_SCHEMA, StoreNames.PNL_STORE_NAME);
        addTaggingAfterField(configurator, PnLFlatDatastoreDescriptionConfig.SCHEMA, StoreNames.PNL_BASE_STORE, StoreFieldNames.INSTRUMENT_SUB_TYPE);
        addTaggingAfterField(configurator, PnLFlatDatastoreDescriptionConfig.SCALAR_SCHEMA, StoreNames.PNL_BASE_STORE, StoreFieldNames.INSTRUMENT_SUB_TYPE);
        addTaggingAfterField(configurator, PnLAggregatedDatastoreDescriptionConfig.SCHEMA, StoreNames.PNL_BASE_STORE, StoreFieldNames.INSTRUMENT_SUB_TYPE);
        addTaggingAfterField(configurator, PnLAggregatedDatastoreDescriptionConfig.SCALAR_SCHEMA, StoreNames.PNL_BASE_STORE, StoreFieldNames.INSTRUMENT_SUB_TYPE);
        ...
    }

Define supported Adjustment

Navigate to SupportedAdjustmentsConfig

Define a SupportedAdjustmentDTO bean.

Add-on

    @Bean
    public SupportedAdjustmentDTO pnlAddOn() {
        return new SupportedAdjustmentDTO(
                ADD_ON_NAME,
                PNL_ADD_ON,
                true,
                PnLCubeConfig.CUBE_NAME,
                Set.of(StoreNames.PNL_STORE_NAME),
                Set.of(
                        new TypedFieldDTO(AS_OF_LEVEL, StoreFieldNames.AS_OF_DATE, LOCAL_DATE),
                        new TypedFieldDTO(TRADE_LEVEL, StoreFieldNames.TRADE_ID, STRING),
                        new TypedFieldDTO(TYPE_LEVEL, StoreFieldNames.TYPE, STRING),
                        new TypedFieldDTO(RISK_FACTOR_LEVEL, StoreFieldNames.RISK_FACTOR, STRING),
                        new TypedFieldDTO(CURRENCY_LEVEL, StoreFieldNames.VALUE_CCY, STRING)
                ),
                Set.of(DTD_PNL_NATIVE),
                Set.of(new TypedFieldDTO(StoreFieldNames.DAILY, DOUBLE))
        );
    }

Scaling

    @Bean
    public SupportedAdjustmentDTO pnlScaling() {
        return new SupportedAdjustmentDTO(
                SCALING_NAME,
                PNL_SCALING,
                true,
                PnlCubeConfig.CUBE_NAME,
                Set.of(StoreNames.PNL_STORE_NAME),
                Set.of(
                        new TypedFieldDTO(AS_OF_LEVEL, StoreFieldNames.AS_OF_DATE, LOCAL_DATE),
                        new TypedFieldDTO(TRADE_LEVEL, StoreFieldNames.TRADE_ID, STRING),
                        new TypedFieldDTO(TYPE_LEVEL, StoreFieldNames.TYPE, STRING),
                        new TypedFieldDTO(RISK_FACTOR_LEVEL, StoreFieldNames.RISK_FACTOR, STRING),
                        new TypedFieldDTO(CURRENCY_LEVEL, StoreFieldNames.VALUE_CCY, STRING)
                ),
                Set.of(DTD_PNL_NATIVE),
                Set.of(new TypedFieldDTO(StoreFieldNames.DAILY, DOUBLE))
        );
    }

Override

    @Bean
    public SupportedAdjustmentDTO pnlOverride() {
        return new SupportedAdjustmentDTO(
                OVERRIDE_NAME,
                PNL_OVERRIDE,
                true,
                PnlCubeConfig.CUBE_NAME,
                Set.of(StoreNames.PNL_STORE_NAME),
                Set.of(
                        new TypedFieldDTO(AS_OF_LEVEL, StoreFieldNames.AS_OF_DATE, LOCAL_DATE),
                        new TypedFieldDTO(TRADE_LEVEL, StoreFieldNames.TRADE_ID, STRING),
                        new TypedFieldDTO(TYPE_LEVEL, StoreFieldNames.TYPE, STRING),
                        new TypedFieldDTO(RISK_FACTOR_LEVEL, StoreFieldNames.RISK_FACTOR, STRING),
                        new TypedFieldDTO(CURRENCY_LEVEL, StoreFieldNames.VALUE_CCY, STRING)
                ),
                Set.of(DTD_PNL_NATIVE),
                Set.of(new TypedFieldDTO(StoreFieldNames.DAILY, DOUBLE))
        );
    }

Roll-over

    @Bean
    public SupportedAdjustmentDTO pnlRollOver() {
        return new SupportedAdjustmentDTO(
                ROLL_OVER_NAME,
                PNL_ROLL_OVER,
                false,
                PnlCubeConfig.CUBE_NAME,
                Set.of(StoreNames.PNL_STORE_NAME),
                Set.of(
                        new TypedFieldDTO(AS_OF_LEVEL, StoreFieldNames.AS_OF_DATE, LOCAL_DATE),
                        new TypedFieldDTO(DESK_LEVEL, StoreFieldNames.DESK, STRING),
                        new TypedFieldDTO(BOOK_LEVEL, StoreFieldNames.BOOK, STRING, true),
                        new TypedFieldDTO(TRADE_LEVEL, StoreFieldNames.TRADE_ID, STRING, true),
                        new TypedFieldDTO(SIGNOFF_STATUS_LEVEL, ADJUSTMENT_LEVEL_STATUS, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_TASK_LEVEL, ADJUSTMENT_LEVEL_TASK, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_SOURCE_LEVEL, SOURCE_FIELD, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_INPUT_TYPE_LEVEL, INPUT_FIELD, LEVEL_PATH, true)
                ),
                null,
                Set.of(new TypedFieldDTO(StoreFieldNames.AS_OF_DATE, LOCAL_DATE))
        );
    }

Cube-level

    @Bean
    public SupportedAdjustmentDTO pnlCubeLevelAdjustment() {
        return new SupportedAdjustmentDTO(
                CUBE_LEVEL_NAME,
                PNL_CUBE_LEVEL,
                false,
                PnlCubeConfig.CUBE_NAME,
                null,
                Set.of(
                        new TypedFieldDTO(AS_OF_LEVEL, StoreFieldNames.AS_OF_DATE, LEVEL_PATH),
                        new TypedFieldDTO(DESK_LEVEL, StoreFieldNames.DESK, LEVEL_PATH),
                        new TypedFieldDTO(BOOK_LEVEL, StoreFieldNames.BOOK, LEVEL_PATH, true),
                        new TypedFieldDTO(TRADE_LEVEL, StoreFieldNames.TRADE_ID, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_STATUS_LEVEL, ADJUSTMENT_LEVEL_STATUS, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_TASK_LEVEL, ADJUSTMENT_LEVEL_TASK, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_SOURCE_LEVEL, SOURCE_FIELD, LEVEL_PATH, true),
                        new TypedFieldDTO(SIGNOFF_INPUT_TYPE_LEVEL, INPUT_FIELD, LEVEL_PATH, true)
                ),
                null,
                Set.of( new TypedFieldDTO(CURRENCY, STRING),
                        new TypedFieldDTO(StoreFieldNames.SENSITIVITY_VALUES, DOUBLE))
        );
    }