SES

ima

Description The stressed expected shortfall
Variations
  • <euler>
  • <incremental>
Reference [MAR33.17]
Notation $SES$
Formula $$SES = \sqrt{\sum_{i=1}^{I}ISES_{NM,i}^2}+\sqrt{\sum_{j=1}^{J}ISES_{NM,j}^2}+\sqrt{\left ( \rho \cdot \sum_{k=1}^{K}SES_{NM,k} \right )^2 + (1-\rho^2) \cdot \sum_{k=1}^{K}SES_{NM,k}^2}$$

Here’s how the measure is implemented:

We recommend using [Risk].[Idiosyncratic] hierarchy to break down the charge into idiosyncratic component and non-idiosyncratic.

See also

search.js