atoti.agg.distinct()#
- atoti.agg.distinct(operand: LevelOrVariableColumnConvertible, /) MeasureDefinition #
- atoti.agg.distinct(operand: VariableMeasureConvertible, /, *, scope: CumulativeScope | SiblingsScope | OriginScope) MeasureDefinition
Return an array measure equal to the distinct values of the passed measure across the specified scope.
Warning
This feature is
experimental
, its key is"agg.distinct"
.- Parameters:
operand – The measure or table column to aggregate.
scope – The
aggregation scope
.
Example
>>> df = pd.DataFrame( ... columns=["ID", "City"], ... data=[ ... (1, "Paris"), ... (2, "London"), ... (3, "New York"), ... (4, "Paris"), ... ], ... ) >>> table = session.read_pandas(df, keys={"ID"}, table_name="Example") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> with tt.experimental({"agg.distinct"}): ... m["Distinct cities"] = tt.agg.distinct(table["City"]) >>> m["Distinct cities"].formatter = "ARRAY[',']" >>> cube.query(m["Distinct cities"], levels=[l["City"]], include_totals=True) Distinct cities City Total New York,London,Paris London London New York New York Paris Paris